金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

高二数学必修5

来源:学大教育     时间:2014-07-22 18:25:29


进入高二以后,我们的数学学习越来越紧张。为了我们在高三的时候可以有更多时间复习,现在还要牵扯到高三知识的学习。可是大家还是要学好高二数学必修5。

双曲线性质的应用

例5 设双曲线 ( )的半焦距为c,

直线l过(a,0)、(0,b)两点,已知原点到 的距离为 ,

求双曲线的离心率.

解析 这里求双曲线的离心率即求 ,是个几何问题,怎么把

题目中的条件与之联系起来呢?如图1,

∵ , , ,由面积法知ab= ,考虑到 ,

知 即 ,亦即 ,注意到a

与双曲线有关的轨迹问题

例6 以动点P为圆心的圆与⊙A: 及⊙B: 都外切,求点P的轨迹方程.

解 设动点P(x,y),动圆半径为r,由题意知 , , .

∴ .∴ , ,据 双曲线的定义知,点P的轨迹是以A、B为焦点的双曲线的右支,方程为 : .

例 7 如图2,从双曲线 上任一点Q引直线 的垂线,垂足为N,求线段QN的中点P的轨迹方程.

解析 因点P随Q的运动而运动,而点Q在已知双曲线上,

故可从寻求 Q点的坐标与P点的坐标之间的关系入手,用转移法达到目的.

设动点P的坐标为 ,点Q的坐标为 ,

则 N点的坐标为 .

∵点 N在直线 上,∴ ……①

又∵PQ垂直于直线 ,∴ ,

即 ……②

联立 ①、②解得 .又∵点N 在双曲线 上,

∴ ,

即 ,化简,得点P的轨迹方程为: .

与双曲线有关的综合题

例8 已知双曲线 ,其左右焦点分别为F1、F2,直线l过其右焦点F2且与双曲线 的右支交于A、B两点,求 的最小值.

解 设 , ,( 、 ).由双曲线的第二定义,得

设直线l的倾角为θ,∵l与双曲线右支交于两点A、B,∴ .

①当 时,l的方程为 ,代入双曲线方程得.

由韦达定理得: .

②当 时,l的方程为 ,∴ ,∴ .

综①②所述,知所求最小值为 .

同学们,文章里面都是我们给大家归纳的有关于高二数学必修5的知识点。我希望同学们你们可以抽时间来掌握。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-102-8926 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956